May 2024 ASHET TECHNOLOGIES ACT-SPU-II

The SPU Mark Il Architecture

SPU Mark Il Architecture

The SPU Mark Il (Stack Processing Unit Mark 1l) is a 16 bit processor that, in contrary to the most popular
CPUs, works primarily with a stack instead of registers. It features a RISC instruction set with highly config-
urable instructions. Although being a stack processor it still requires some basic registers to work. These
registers are either accessed indirectly (like the IP register) or by special instructions (like BP or SP register).

Each instruction is composed of a configuration part and a command part. Commands are the actual func-
tion of the instruction like STORE8 or MUL. Each command has two input variables input0 and input1 which
contain the two command parameters. A command also has an output value.

In which way the command parameters are filled and the result is processed is defined by the configuration
bits of the instruction. These bits allow conditional execution, input parameter modification, affect flags
and define how the result of the command is processed.

As each instruction may be conditional, there are no special conditional jump commands. In fact, there isn't
even a jump command at all. A jump is done by taking the output of a command to be the next instruction
pointer.

Thus, the most simple COPY command can be used already for a whole set of different operations: jmp $imm,
push $imm, pop and many more.

CPU Variants

This document specifies two different variants for the SPU Mark Il architecture:

» SPU Mark Il
* SPU Mark II-L

The SPU Mark II-L is a reduced version of the default instruction set and features no interrupt handling,
thus making an implementation of the ISA much easier.

Documentation Style

Numbers

Numbers are documented in three ways:

Decimal numbers are written the usual style. Hexadecimal numbers are prefixed by a 0x. Binary numbers are
postfixed with a subscript ,. If both decimal and binary notation are given, the decimal notation is postfixed
with a subscript 1o to make the difference clear.

Examples:

Decimal numbers: 10, 23, 4449

Hexadecimal: 0x10, 0xFF, 0xCC3D

Binary: 105, 1100101,

Mixed binary and decimal: 10, (24¢0), 11005 (1219)

May/24, v1.12 The SPU Mark Il Architecture Page 10of 15

ASHET TECHNOLOGIES
May 2024 The SPU Mark Il Architecture ACT-SPU-II

Bit Ranges

This document uses some special notations to define bit ranges or indices.
[n] is a placeholder for the nth bit in a word.

[n:m] is a placeholder for the bit range from the nth (highest significant bit) to the mth (lowest significant
bit).

So [3] means the the bit with the significance of 22 and [7:4] is the upper nibble of a 8 bit word.

Wording
Undefined (value)

If a value is defined undefined, its initial value may be any possible value. The value may change between
power cycles or even after a reset. Each bit must be considered random.

Undefined behavior

Undefined behavior is used similar to the way the C standard uses this word. It means that if a situation
happens where undefined behavior would occur, the results of the operation may be anything. This can be
a no-op, any state or memory change or even a CPU hang or hard reset (may even requires a power cycle).
Basic Properties

Word Encoding and Signedness

The SPU Mark Il uses the little endian encoding, so the less significant byte is at the lower address, the
more significant byte at the higher address.

Integer arithmetic uses two-complement signed integers. This allows most arithmetic instructions to be
used with signed and unsigned values.

Memory Access

The cpu only allows aligned memory access for word access. Unaligned word access must be programmed
manually.

CPU Registers

Stack Pointer (SP)

16 bit register storing the address of the topmost value of the stack. The stack grows downwards, so a

push operation decrements the SP by two and then stores a value to the decremented address. A pop or
peek operation reads the value from sp, and for pop, SP will be incremented by 2.

[15:1] [0]
address 0

May/24, v1.12 The SPU Mark Il Architecture Page 2 of 15

ASHET TECHNOLOGIES
May 2024 The SPU Mark Il Architecture ACT-SPU-II

Bit Fields Description

[0] reserved, must be zero
[15:1] aligned stack top address

Initial Value: Undefined

Base Pointer (BP)

16 bit register that may be used for indirect addressing via GET and SET commands and may be used as a
frame pointer or index register.

[15:1] [0]
address 0

Bit Fields Description

[0] reserved, must be zero
[15:1] aligned address

Initial Value: Undefined

Instruction Pointer (IP)

16 bit register pointing to the instruction to be executed next.

[15:1] [0]
address 0

Bit Fields Description

[0] reserved, must be zero
[15:1] aligned instruction address

Initial Value: Undefined

Flag Register (FR)

16 bit register saving CPU state and interrupt system

[15:8] [7:4] [3] [2] [1] [O]
0 int_en ce| c n | z

May/24, v1.12 The SPU Mark Il Architecture Page 3 of 15

ASHET TECHNOLOGIES
May 2024 The SPU Mark Il Architecture ACT-SPU-II

Bit Range Name Description

[o] y4 Zero Flag

[1] N Negative Flag

[2] C Carry

[3] CE Carry Enable

[7:4] I[3:0] Interrupt Enabled bitfield for interrupts 4 to 7
[15:8] - Reserved, must be 0.

Initial Value: 0x0000

Note: The flags 1[3:0] are not available in SPU Mark II-L

Interrupt Register (IR)

16 bit register storing internal interrupt information.

[15:8] [7:4] [31 [2] [1] [O]
0 int 0 |bus|nmi| rst
Bit Range Name Description
[o] RST Reset was triggered
[1] NMI Non-maskable interrupt triggered
[2] BUS Bus error triggered
[3] - Reserved, must be 0
[4] ARITH ARITH was triggered
(5] SOFTWARE SOFTWARE was triggered
(6] RESERVED RESERVED was triggerd
[7] IRQ IRQ was triggered
[15:8] - Reserved (must be 0)

Initial Value: 0x0001 (Reset interrupt triggered)

Note: Not available in SPU Mark II-L

Instruction Encoding

Instructions use 16 bit opcodes organized in different bit fields defining the behaviour of the instruction:

[15] [14:9] [8] [7] [6:5] [4:3] [2:0]
0 cmd out | flg inl in0 cond

May/24, v1.12 The SPU Mark Il Architecture Page 4 of 15

ASHET TECHNOLOGIES
May 2024 The SPU Mark Il Architecture ACT-SPU-II

Bit Range Description

[2:0] Execution Conditional

[4:3] Input O Behaviour

[6:5] Input 1 Behaviour

[7:7] Flag Modification Behaviour

[8:8] Output Behaviour

[14:9] Command

[15:15] Reserved for future use (must be 0)

Conditional Execution

This field determines when the command is executed or ignored. The execution is dependent on the current
state of the flags.

This allows conditional execution of all possible opcodes.

Value Enumeration Description

000, (0q19) Always The command is always executed

0015 (110) =0 The command is executed when result is zero (z=1)

0105 (210) #0 The command is executed when result is not zero (Z=0)

0115 (370) >0 The command is executed when result is positive (Z=0 and N=0)

100, (410) <O The command is executed when result is less than zero (N=1)

1015 (599) >0 The command is executed when result is zero or positive (Z=1 or N=0)
1105 (619) <O The command is executed when result is zero or negative (Z=1 or N=1)
1115 (719) Overflow The command is executed when Carry is set.

Argument Input O and 1

These two fields define what arguments are provided to the executed command.

Value Enumeration Description

00, (019) Zero The input register will be zero.

015 (140) Immediate The input registers value is located after this command.
105 (219) Peek The input register will be the stack top.

11, (3419) Pop The input register will be popped from the stack.

Zero means that the argument will be zero, Immediate means that it will be fetched from the instruction
pointer (it is located behind the opcode in memory). Peek will take the argument from the stack top, but
won't change the stack and Pop will take the argument from the stack top and decreases the stack pointer.

inputO is fetched before input1 so when both arguments pop a value, input0 receives the stack top and
inputl receives the value one below the stack top. Likewise, when both arguments use the Immediate
option, the value for input0 must located directly after the opcode, input1 directly after inputo0.

Flag Modification

When the flag modification is enabled, the current N and z flags will be overwritten by this command. Oth-
erwise the flags stay as they were before the instruction.

May/24, v1.12 The SPU Mark Il Architecture Page 5 of 15

ASHET TECHNOLOGIES
May 2024 The SPU Mark Il Architecture ACT-SPU-II

Value Enumeration Description

0, (010) No The flags won't be modified.
12 (110) Yes The flags will be set according to the command output.

The flags are modified according to this table:

Flag Condition

Y4 output[15:0] =
N output[15] = 1
C unchanged
CE unchanged
| unchanged

0

Output Behaviour

Each command may output a value which can be processed in various ways. The output could be pushed
to the stack, the command could be made into a jump or the output could be ignored.

Value Enumeration Description

05 (049) Discard The command output will be ignored.
15 (149) Push The command output will be pushed to the stack.

For Jump Relative, the instruction pointer will point to the next instruction plus output words. output is con-
sidered a two-complements signed number. This differs from the Jump behavior which takes an address,
not a word offset.

Commands

Commands are what define the core behaviour of the opcode. They allow arithmetics, modification of
memory, changing system registers and so on.

Some hints on notation:

e MEM16[x] is the 16 bit word at address x
e MEM8[x] is the 8 bit word at address x

Executing instructions not defined in the list below are considered undefined behaviour and may do any
behaviour.

If a register has a subscript o, it means that this refers to the value before the instruction is executed. If
there is a subscript ;, it means that this refers to the value after the instruction was executed. Note: , still

Value Name Pseudo-Code

000000, (010) COPY output = inputO

0000015 (140) reserved

0000105 (210) GET output = MEM16[BP + 2 * inputO]

0000115 (34p) SET output = inputl; MEM16[BP + 2 * inputO] = inputl

May/24, v1.12 The SPU Mark Il Architecture Page 6 of 15

ASHET TECHNOLOGIES

May 2024 The SPU Mark Il Architecture ACT-SPU-II
Value Name Pseudo-Code

000100, (44p) STORE8 output = inputO & OxFF; MEM8[inputl] = inputO
0001015 (519) STORE16 output = inputO; MEM16[inputi] = inputO
0001105 (61p) LOADS output = MEM8[inputO]

0001115 (710) LOAD16 output = MEM16[inputO]

0010005 (810) CPUID See below

0010015 (919) HALT See below

0010105 (1019) FRGET output = (FR & “inputl)

0010115 (1149) FRSET output = FRy; FR; = (inputO & ~inputl) | (FRo & inputl)
0011005 (1219) BPGET output = BP

0011015 (1319) BPSET output = BPy; BP; = inputO

0011105 (144¢9) SPGET output = SP

0011115 (1519) SPSET output = SPy; SP; = inputO

010000, (1610) ADD output = inputO + inputl + (C & CE)

0100015 (17410) SUB output = inputO - inputl - (C & CE)

010010, (1849) MUL output = inputO * inputl

010011, (1949) DIV output = inputO / inputl

010100, (2049) MOD output = inputO % inputl

010101, (2159) AND output = inputO & inputl

0101105 (2210) OR output = input0O | inputl

010111, (2349) XOR output = inputO ~ inputl

0110005 (2440) NOT output = “inputO

0110015 (2510) SIGNEXT output = if(input[7] = 1) (0xFF0O | input0) else (inputO & OxFF)
011010, (2649) ROL output = concat(input0[14:0], inputO[15])
0110115 (2710) ROR output = concat(input0[0], inputO[15:1])
0111005 (28419) BSWAP output = concat(inputO[7:0], inputO[15:8])
011101, (2910) ASR output = concat(input0[15], inputO[15:1])
0111105 (304¢) LSL output = concat(input0[14:0], '0')

0111115 (3149) LSR output = concat('0', inputO[15:1])

100000, (3210) SETIP output = IPy; IP; = inputO; FR; = FRo | inputl
1000015 (3319) ADDIP output = IPy; IP; = IP; + inputO; FR; = FRo | inputl
1000105 (3440) INTR output = inputO; IR = IR | inputO

1000115 (3519) reserved

100100, (36419) reserved

1001015 (3719) reserved

1001105 (38419) reserved

1001115 (3919) reserved

101000, (4049) reserved

1010015 (4140) reserved

1010105 (42419) reserved

1010115 (4349) reserved

1011005, (4449) reserved

1011015 (45419) reserved

1011105 (4649) reserved

1011115 (4719) reserved

1100005 (48419) reserved

1100015 (4949) reserved

110010, (5049) reserved

1100115 (514¢9) reserved

1101005 (5219) reserved

1101015 (5319) reserved

1101105 (544¢) reserved

May/24, v1.12

The SPU Mark Il Architecture

Page 7 of 15

ASHET TECHNOLOGIES
May 2024 The SPU Mark Il Architecture ACT-SPU-II

Value Name Pseudo-Code

1101115 (5519) reserved
111000, (5649) reserved
1110015 (5749) reserved
1110105 (5849) reserved
111011, (5949) reserved
1111005 (60419) reserved
1111015 (6149) reserved
111110, (6249) reserved
111111, (6349) reserved

MUL, DIV and MOD use signed values as input and output. It is not possible to get the upper 16 bit of the
multiplication result.

ADD and SUB will add/subtract 1 more if the Carry and Carry Enabled flag are both set.
ADD, SUB, MUL will modify the Carry flag, even if Carry Enabled flag or Modify Flags instruction field is disabled:

+ When ADD is overflowing and setting a virtual 17th bit, carry will be set

« When sUB is overflowing and setting a virtual 17th bit, carry will be set

 When MUL is overflowig and setting any bits in the upper half of the virtual 32 bit result, carry will be
set.

In all other cases when one of the carry modifying command is invoked, carry is cleared. Other commands
then those specified above will not modify carry in any way.

CPUID

This instruction is meant to return the current set of CPU features or possible future extensions. For now,
this instruction requires both input0 and input1 to be zero, the output will be zero as well.

HALT

Stops execution of instructions until an interrupt happens and interrupts are enabled.

Memory Access

Only 2-aligned access to memory is possible with code or data. Only exception are the STORES and LOADS
commands which allow 1-aligned memory access.

When accessing memory with alignment, the least significant address bit is reserved and must be 0. If the
bit is 1, the behavior is undefined.

Fetch-Execute-Cycle

This pseudocode documents what the CPU does in detail when execution a single instruction.

if (IR & 1) !'= 0O:
IP := fetch(0x0000)

May/24, v1.12 The SPU Mark Il Architecture Page 8 of 15

ASHET TECHNOLOGIES

May 2024 The SPU Mark Il Architecture ACT-SPU-II
FR := 0x0000
IR := 0x0000

while IR != O:
intr bit := indexOfHighestSetBit(IR)

IR &= ~(1<<intr_bit) # clear "interrupt triggered”
if intr_bit < 4 or (FR & (i<<intr_bit)) != 0: # <f interrupt is not masked

push(l<<intr_ bit)
push (IP)
IP := fetch(2 * intr_bit) # fetch ISR handler

if intr_bit >= 4: # 1f anterrupt is maskable

FR &= “(1<<intr_bit) # unmask interrupt

instruction := fetch(IP)
IP += 2

if isExecuted(instruction, FR):
inputO := fetchInput(instruction.inputO)

inputl := fetchInput(instruction.inputl)

output := instruction.command(inputO, inputl)

select instruction.output:
when 'push':
push (output)
when 'discard':
t1gnore
when 'jmp':
IP := output
when 'rjmp':
IP += 2 * output

if instruction.modifyFlags:
FR.Z = (output == 0x0000)
FR.N = (output >= 0x8000)

else
if instruction.inputO == IMM:
IP += 2
if instruction.inputl == IMM:
IP += 2

TODO: Add handling of BUS fault!
For the non-interrupt version, the state machine is simpler:
if RST is high:

IP := 0x0000

FR := 0x0000

instruction := fetch(IP)
IP += 2

if isExecuted(instruction, FR):

May/24, v1.12 The SPU Mark Il Architecture

Page 9 of 15

ASHET TECHNOLOGIES

May 2024 The SPU Mark Il Architecture ACT-SPU-II
inputO := fetchInput(instruction.inputO)
inputl := fetchInput(instruction.inputl)
output := instruction.command(inputO, inputl)

select instruction.output:
when 'push':
push (output)
when 'discard':

if instruction.modifyFlags:
FR.Z = (output == 0x0000)
FR.N = (output >= 0x8000)

else
if instruction.inputO == IMM:
IP += 2
if instruction.inputl == IMM:
IP += 2

Interrupt handling

Note: Interrupt handling is not available in SPU Mark II-L

The SPU Mark Il provides 8 possible interrupts, four unmasked and four masked interrupts.

When an interrupt is triggered the CPU pushes the current instruction pointer to the stack and fetches the
new instruction Pointer from the interrupt table. Then the flag in the Interrupt Register is cleared as well as
the mask bit in the Flag Register (if applicable).

The reset interrupt is a special interrupt that does not push the return address to the stack. It also resets
the Interrupt Register and the Flag Register.

Masking

If an interrupt is masked via the Flag Register (corresponding bit is 0) it won't be triggered (the Interrupt
Register bit can't be set).

Interrupt Table

It is possible to assign each interrupt another handler address. The entry points for those handlers are
stored in the Interrupt Table at memory location 0x0000:

Interrupt Routine Pointer
0O Reset 0x00
1 NMI 0x02
2 BUS 0x04
3 RESERVED 0x06
4 ARITH 0x08
5 SOFTWARE 0x0A
6 RESERVED o0x0C

May/24, v1.12 The SPU Mark Il Architecture Page 10 of 15

ASHET TECHNOLOGIES

May 2024 The SPU Mark Il Architecture ACT-SPU-II
Interrupt Routine Pointer

7 IRQ 0xOE

Reset

This interrupt resets the CPU and defines the program entry point.

NMI

This interrupt is the non-maskable external interrupt. If the NMI pin is signalled, the interrupt will be triggered.

BUS

This interrupt is a non-maskable external interrupt.

The BUS interrupt is meant for an MMU interface and will prevent the currently executed instruction from
having any side effects.

Remarks: It is required that the BUS interrupt happens while doing a memory operation. If after a memory
read or write cycle the BUS pin is signalled, the CPU will assume as bus error and will trigger this interrupt.

ARITH

This interrupt is triggered when an error happens in the ALU. The reasons may be:

» Division by zero

SOFTWARE

This interrupt is meant to be triggered by executing CPUCTRL and will never be triggered by either peripherial
hardware or internal circumstances.

IRQ

This interrupt is the maskable external interrupt. If the IRQ pin is signalled, the interrupt will be triggered.

Priorities

Before execution of each instruction the cpu checks if any interrupt is triggered. The handler for the lowest
interrupt triggered will then be activated.

External Interface

¢ 16 output address lanes
e 16 in/out data lanes

May/24, v1.12 The SPU Mark Il Architecture Page 11 of 15

ASHET TECHNOLOGIES
May 2024 The SPU Mark Il Architecture ACT-SPU-II

output WE, RE signal

input HOLD signal

input CLK signal

input RST signal

input NMI signal

input BUS signal

input IRQ signal

output TYPE signal (tells if memory access is for code or data)

Changelog

v1.12

e Renames "Chip I/0s” section to "External Interface”

vin

* Removes CPUCTRL instruction

Removes output behaviour jump and rjmp

Changes instruction encoding, Command now has 6 bits, Output Behaviour has now 1 bit.

Introduces new HALT command (replaces CPUCTRL)

Swaps input semantics for STORES and STORE16 (reusing the address is more common than reusing the
value)

« Introduces new SETPC and ADDPC command (replaces the previous Output Behaviour jump and rjmp)
 Introduces new command INTR

TODO: Document HALT behaviour/state as well as interrupt resumption
TODO: Reintroduce a way to trigger software interrupts
TODO: Change interrupt behaviour

« Interrupts now push FR, IP, then jump to the ISR => iret = "setpc [i0:pop][i1:pop]
« Interrupts will disable all interrupts when entering the ISR => no nested/recursive interrupts => iret
will restore the interrupt enable state

TODO: Improve description of the state machine + transitions
TODO: Make shifts take input1 the number of bits to shift.

v110

¢ Introduces CPUID and CPUCTRL
¢ Introduces SOFTWARE interrupt.

v1.9

Introduces the concept of Carry

Adds new execution modifier Overflow that allows checking for carry
Changes ADD and SUB to respect the Carry and Carry Enable bit
Changes ADD, SUB and MUL to change the Carry bit

May/24, v1.12 The SPU Mark Il Architecture Page 12 of 15

ASHET TECHNOLOGIES
May 2024 The SPU Mark Il Architecture ACT-SPU-II

v1.8

Removes NEG command

Replaces free command slot with SIGNEXT

Changes pseudo code for Fetch-Execute-Cycle examples to a python-like language
Improves register description for BP

Improves register description for Sp

Adds some clarification on the pseudo code in the Command table

v1.7

* Makes frset, spset, bpset return the previous value instead of the newly set. This allows improved or
shorting handling of safed parameters.

v1.6

o Fixed typo in IP description

v1.5

o Textual architecture description

o Improves overall document quality.

« Introduces SPU Mark II-L (Version with no interrupt handling)
* FRGET now also provides a masked register access

v1.4

o Reorderes IRQ table

FIX: Missing interrupt 6 from IRQ table

Adjusts IR, FR

Makes BUS nonmaskable

Allows FRSET to have a masked register access

v1.3

» Defines unaligned memory access undefined behaviour.

« Packs all IRQs into a single one. Requires use of a memory mapped interrupt controller, but is ultimately
less limiting.

Reduces interrupt count to 8 (still two reserved interrupts)

Adds interrupt descriptions.

Makes BUS interrupt an external interrupt for a MMU

Makes BUS prevent all effects from the current instruction

v1.2

o Adds preliminary 1/O description

May/24, v1.12 The SPU Mark Il Architecture Page 13 of 15

ASHET TECHNOLOGIES
May 2024 The SPU Mark Il Architecture ACT-SPU-II

v1a

o Adds FR, BP, SP, IP register names to register description
o Adds FRGET, FRSET instruction
« Introduces interrupt handling description

v1.0

¢ |nitial version

May/24, v1.12 The SPU Mark Il Architecture Page 14 of 15

ASHET TECHNOLOGIES

May 2024 The SPU Mark Il Architecture ACT-SPU-II
Contents
SPU Mark Il Architecture 1
CPU Variants 1
Documentation Style 1
NUMDEIS . . . e e e e 1
Bit Ranges o e 2
Wording o o e e e e e 2
Undefined (value) o e e 2
Undefined behavior e e e e e e 2
Basic Properties e e e e e e 2
Word Encoding and Signedness e e e e e e e e 2
MEMOIY ACCESS . . o v o o e et e e e e e e e e e e e e e e e e e e e 2
CPUReQISIErs o e e e e e e 2
Stack Pointer (SP) o o e e 2
Base Pointer (BP) o e e 3
Instruction Pointer (IP) e e 3
Flag Register (FR) o o o i e 3
Interrupt Register (IR) e e e e e e 4
Instruction Encoding o e e e e e 4
Conditional Execution e e e 5
Argument input O and T L e e e e 5
Flag Modification e e e 5
Output Behaviour e e e 6
CommaNnds e e e e e e e e 6
MEMOIY ACCESS . & . v v i e 8
Fetch-Execute-Cycle o e e e e e e 8
Interrupt handling o o e e e e e e 10
Masking o o e e e 10
Interrupt Table e e e e e e e 10
PriOritieS . . e e e 1
External Interface 1"
Changelog 12
VT e e e 12
VT e e e 12
V0 . e e 12
VD e e e 12

May/24, v1.12 The SPU Mark Il Architecture Page 15 of 15

ASHET TECHNOLOGIES

May 2024 The SPU Mark Il Architecture ACT-SPU-II
V8 e e 13
V7 e e e 13
VLB e e e 13
VS e e 13
VA e 13
VL e e 13
VL e e 13
Ve e 14
V0 e 14

May/24, v1.12 The SPU Mark Il Architecture Page 16 of 15

	SPU Mark II Architecture
	CPU Variants
	Documentation Style
	Numbers
	Bit Ranges
	Wording
	Undefined (value)
	Undefined behavior

	Basic Properties
	Word Encoding and Signedness
	Memory Access

	CPU Registers
	Stack Pointer (SP)
	Base Pointer (BP)
	Instruction Pointer (IP)
	Flag Register (FR)
	Interrupt Register (IR)

	Instruction Encoding
	Conditional Execution
	Argument Input 0 and 1
	Flag Modification
	Output Behaviour
	Commands

	Memory Access
	Fetch-Execute-Cycle
	Interrupt handling
	Masking
	Interrupt Table
	Priorities

	External Interface
	Changelog
	v1.12
	v1.11
	v1.10
	v1.9
	v1.8
	v1.7
	v1.6
	v1.5
	v1.4
	v1.3
	v1.2
	v1.1
	v1.0

